About admin

This author has not yet filled in any details.
So far admin has created 14 blog entries.

Can Less Mean More?

How Triathletes Can Get the Most Out of Limited Time in the Water

We get it: There is a limited amount of time that a triathlete can spend training in any one sport. It doesn’t help that swimming is most likely not a triathlete’s favorite event – or that access to water for training might be a significant impediment to training year-round.  So how can you make your swimming more effective and improve your finish times – without increasing swim training times?

For starters, science doesn’t push for ever more time/distance in the water as the best way to improve your swim times. In fact, just the opposite is true: research suggests that even a limited time in the water can produce a substantial improvement in performance time. Obviously, no one is advocating that swim training isn’t required to be successful. Instead, this post – and the significant research behind it – suggests 5 ways you can make the most out of every swim.

  1. Dedicate a large portion of your time in the water to swimming slow. This allows you to avoid fatigue and focus more on technique.  Your goal is to establish a regular routine of short, slow swims with the priority on skill improvement.  (Your endurance training with your biking and running make this focus on technique swimming possible.)
  2. Practice breathing less frequently to improve visual input. When swimming slower, a swimmer can minimize the number of breathing strokes. If the head is motionless on nonbreathing strokes, swimmers can better focus on visual input. They will be more certain of what they see and be better able to control their movements using visual feedback. This will also help when you are swimming in open water when conditions are less than ideal.
  3. Set a goal and work towards improving technique on every swim. Strokes performed with an ineffective technique (because of fatigue, speed, breathing, etc.), are not likely to improve or reinforce effective technique. It is essential to practice your technique to develop skills that enable you to swim faster. It’s far better to swim more slowly while focusing on technique elements like arm entry, head position, pulling through to the thigh on each stroke, etc., than it is to swim as fast as possible for as long as possible.
  4. When possible, practice in race-specific conditions. The ultimate goal of skill-learning is to maintain the most effective technique throughout an entire race. A reduced distance regimen allows more time for swimmers to practice under simulated race conditions (i.e. choppy water, swells, transitions). For example, training sets that include a start from shore provide swimmers with the opportunity to practice starts.
  5. Get feedback from a coach or fellow triathlete. While many triathletes work regularly with both sport and strength coaches, many do not. For both, asking for feedback on some aspect of your swimming technique can provide valuable information. For example: Is your head level when not breathing? Do you raise your elbows the same way on left/right hand strokes? Are you “dragging” your legs or is your body position basically level? Are you rolling your body excessively when you begin your stroke? This kind of feedback is essential to improving technique. If you are fortunate enough to have a swim coach, don’t be shy about asking for a regular short technique assessment. Getting a friend to video record your stroke for you to see can also be an eyeopener.

The bottom line: A limited amount of time spent swimming results in fewer stroke cycles and allows a triathlete to focus on technique in a way that enables lasting change.  Fewer cycles also mean less shoulder stress and pain. Shoulders that are not stressed and not suffering from inflammation are not as likely to interfere with swimming, biking or running. Which means: you can get the most out of your practice swims, swim faster with better technique, and devote more time to the rest of your packed schedule.

By | June 21st, 2019|blog|0 Comments

How to Stop Shoulder Pain Before Injury

Of the three primary risk factors for shoulder injury (excessive training distance, muscular imbalances, and improper technique) only technique is controlled by the swimmer. That makes changing technique the most effective way for a swimmer to prevent injury and avoid pain.

In butterfly and freestyle, the arm entry can be especially stressful. Because of this, adjusting technique elements in the arm entry can make a huge difference not only in a swimmer’s shoulder pain but also in a swimmer’s times. Here’s what you need to consider.

Freestyle Arm Entry

For many swimmers, the hand is closer to the surface than the shoulder at the completion of the freestyle arm entry. This position generates only minimal propulsive force and is directly related to joint aggravation or “impingement syndrome.”  It also provides a “triple whammy” to swimmers: (1) it stresses the shoulder, (2) it wastes time by slowing the stroke rate (often .1 – .3 seconds each stroke!), and (3) it wastes effort by generating less propulsive force on each stroke. Still, this technique of arm entry is common, accepted, and often promoted.

Some swimmers intentionally keep the arm in the entry position as the opposite arm begins to recover. This technique, known as catch-up stroke, leaves the arm in a weak, awkward and stressful position and causes a timing delay as it produces gaps in propulsion. A swimmer cannot substantially increase hand force until the hand submerges below the level of the shoulder.

Two different positions at the completion of the arm entry: hand above the shoulder (left) and hand level with the shoulder (right).

Modifying the freestyle arm entry with a downward angle positions the hand deeper than the shoulder to immediately begin the pull with elbow flexion and allows the transition from entry to pull in a continuous motion. The resulting arm position is stronger (more mechanically advantageous), and less stressful on the shoulder.

In the image that follows, a biomechanical model shows an effective freestyle arm entry that provides a mechanical advantage at the beginning of the pull. Hand force increases quickly and dramatically with minimal shoulder stress.

Arm Entry in Butterfly

In butterfly, many swimmers complete the arm entry with the hands closer than the shoulders to the surface with the head slightly below the surface. This arm position stresses the shoulders and results in a weak and awkward position to begin the pull.

The extreme – but all too common – examples below of an ineffective butterfly arm entry shows the position that is classically related to joint surface aggravation or “impingement syndrome.” 

In contrast, a downward arm entry angle results in a stronger arm position, less wasted motion, and reduced shoulder stress.

In the image that follows, a biomechnaical model shows an effective arm entry that immediately begins the butterfly pull with elbow flexion. This allows hand force to increase quickly and dramatically with minimal shoulder stress.

Whenever the hands are above the shoulders, the arms are in a weak and awkward position. Stress to the shoulder is significant and mechanical leverage is poor. In fact, a swimmer can only generate minimal force – in either freestyle or butterfly – until the hands submerge below the level of the shoulders. This “wasted time” is a universal problem of dramatic proportion and is well-documented, even in swimmers at the highest level of competition.

The Bottom Line?

Adjusting technique elements in the arm entry can make a huge difference not only in a swimmer’s shoulder pain and injury but also in a swimmer’s times.

By | May 13th, 2019|Uncategorized|0 Comments

Is Your Shoulder Pain Caused by Injury or Conditioning?

Swimming through injury pain can delay recovery and in many cases may cause more damage. Swimming through conditioning pain, on the other hand, is part of training. Because of these differences, it is critical to identify the cause of shoulder pain.

Characteristics of pain caused by injury are:

  • Localized pain that can be pinpointed at the front of the shoulder
  • Tenderness in a specific area when gently palpated with the thumb
  • A dramatic increase in pain when the arm is lifted overhead and inwardly rotated
  • Noticeable restriction in range of motion

Characteristics of pain caused by conditioning are:

  • General soreness throughout an entire muscle
  • Pain that does not severely increase as the arm is elevated and inwardly rotated
  • Little or no restriction in the range of motion

Coming soon: Swimming Without Pain by Rod Havriluk, Ph.D., p.88

Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a possible injury or persistent pain.

By | April 17th, 2019|Uncategorized|0 Comments

Olympians Are Not Flying Pigs!

When scientific information doesn’t seem useful to coaches or swimmers, they may turn instead to information that is readily accessible, explained in familiar terminology, and which has demonstrated applicability. That information can encourage them to model the fastest swimmers and the most successful teams. For example, the “noticeable” (i.e. obvious) mechanics of an Olympic champion are often modeled. The weakness of this approach is that the characteristic technique elements of a champion are not always effective.

For wholesale adoption of an individual’s traits, a performance must be so outstanding that it’s the equivalent of “teaching a pig to fly” (Brewer, 1976). For example, in a 50 m race a swimmer would have to beat the field by several body lengths to meet this oft used “statistical” standard. Since this race is usually determined by a small fraction of a body length, even the fastest Olympians can’t be classified as “flying pigs.” The danger in modeling a champion who is less than a flying pig, is that his or her success may be due to an attribute such as size, strength, or pain tolerance –  and not technique.

Fortunately for swimmers and coaches alike, science can – and does- reliably determine the relative impact of specific factors on performance. It’s time to apply proven, science-based information — and time to forget about those flying pigs!

By | March 12th, 2019|Uncategorized|0 Comments

Streamline Cues with MONA

Checking your streamline cues off every wall for one set each workout is a great way to make sure you’re on track with tight streamlines. Repetition is key when it comes to fixing bad habits.
By | March 5th, 2019|Uncategorized|0 Comments

4 Technique Tips That Will Benefit Almost EVERY Swimmer

Every swimmer has different strengths and limitations. However, research has shown that almost all swimmers can make improvements on these 4 technique elements to swim faster.

1. Butterfly – Limit head submersion on arm entry.

Cue: Feel the water level at the top of the head when the hands enter the water.

2. Backstroke – Increase hand force throughout the push phase.

Cue: Feel the hand pushing water back towards the feet throughout the push phase.

3. Breaststroke – Kick feet back and together so that they touch at the finish of every kick.

Cue: Feel the feet touch at the finish of every kick.

4. Freestyle – Push hand back beneath the thigh.

Cue: Feel the thumb touch the front of the thigh at the finish of every stroke.


By | January 25th, 2019|Uncategorized|1 Comment

Loch Ness Monster Neck

Loch Ness Monster Neck (Otherwise known as breathing position in breaststroke!)

During a recent meeting with a client, I was asked:  What’s up with the Loch Ness Monster neck you recommend for breaststroke breathing?”

It took only a few seconds to understand the question – – and a few more to stop laughing. What a great question though – – and one that made sense to us both.  That’s because I do teach a pretty different approach to breaststroke breathing. It’s definitely not a hoax though, as science clearly shows a better way than what conventional wisdom tells us. (By the way, we don’t actually refer to an effective breathing position as “Loch Ness Monster Neck.”)

Common recommendations for breaststroke breathing call for lifting the “head, neck, and upper chest out of the water to breathe.”  In Figure 1, Michael Phelps does exactly that.

Figure 1. Michael Phelps breathes on breaststroke.

In addition, many sources recommend a “neutral” angle at the neck while maintaining the head and torso “in alignment.”  You can see clearly that these recommendations require “lifting the head” (a strictly vertical motion maintaining the alignment of head, neck, and body), as opposed to “extending at the neck” (a primarily rotational motion of the head about the neck).

So what’s wrong with this picture and how does the “Loch Ness Monster neck” make a difference?

First, let’s consider the laws of physics.

That angled body position creates considerable additional resistance as more of the surface of the upper body must push through the water.  Think about it and try a simple experiment. (No need to jump in the pool.)  Imagine riding in a car with the window open and your arm out. Hold your hand parallel to the road for a few seconds. Then, flex at the wrist to hold your hand perpendicular to the road.  Which position generates more resistance against your hand?  Now, think about that same movement in water, which generates considerably more resistance than air. The angled body is a less hydrodynamically effective shape that increases both form resistance (underwater) and wave resistance. (See Figure 2.)

It seems “eyeball” obvious that maintaining a position more parallel to the water would make a difference.

Figure 2. An above surface arm recovery is consistent with the excess upward head and body motion of typical breaststroke technique. Also, note the wave resistance. Is there any way that could help a swimmer swim faster?

How about the biomechanics of that excess vertical motion?

The typical upward breathing motion limits a swimmer’s speed in a number of related ways:

  • Generating upward body motion compromises forward arm propulsion.
  • A decrease in arm propulsion, in turn, slows the swimmer’s velocity at a critical point in the stroke cycle – just prior to the kick recovery.
  • The excess vertical motion increases the path that the body travels. (Again think about just this one point: what is the shorter distance: a straight line or a curvy/undulating line?)
  • From the breathing position, it requires considerable time for the swimmer to regain the streamline position. (Which takes longer? Bobbing up and down or staying level and streamlined in the water?)


Which brings us to the Loch Ness Monster Neck.

There are two main options to position the mouth above the surface so that the swimmer can take a breath. The first option for breathing is to change the angle of the body. In Figure 3, the model maintains the nonbreathing neck orientation and angles the body. Much of her torso must push against water and wave resistance. (This is the option illustrated in Figures 1 and 2 above.)

It might help to look at an illustration rather than a photograph. (Figure 3 below)

Figure 3. In this illustration, the model has a 30o angle at the lower back and a 0o angle at the neck.


The second breathing option (Figure 4 below) is to change the angle at the neck to breathe. While this option might feel strange and seem difficult at first, it offers several advantages.

Figure 4. The model has a 12o angle at the lower back and is extending her neck through the full range of motion (about 60o angle at the neck). The front view shows an improved hydrodynamic shape.

If the body maintains a more level position by breathing with full neck extension, limitations are minimized. Specifically:

  • The arm motion generates more force to move the body forward instead of upward.
  • A greater arm propulsion maintains a greater body velocity prior to the kick recovery.
  • The more level body is more hydrodynamically shaped, reducing form and wave resistance.
  • Less vertical motion produces a shorter path for the body to travel.
  • From the breathing position, it requires less time for the swimmer to regain the streamline position.

So, how do you develop this improved breathing technique? Practice!

You probably already know that a swimmer will not naturally use the full range of motion at the neck to breathe.  Learning to use complete neck extension may initially be uncomfortable.  Consequently, swimmers may be discouraged from practicing sufficient repetitions. But there are 3 considerable rewards when a swimmer masters this breathing technique:

  1. Resistance is minimized as the body remains more horizontal
  2. Arm motion is more effective as the body travels a shorter path
  3. The reduced vertical motion enables the swimmer to more quickly regain the streamline position on every stroke cycle.

As with other technique improvements, there are cues that a swimmer can use to learn to completely extend the neck for a more effective breathing motion. Focusing on cues will help change the breathing motion.

Cue 1: As the neck begins to extend, the swimmer can feel the chin move forward through the water.

Cue 2: As the neck completely extends, the swimmer can feel the limit of the range of motion at the back of the neck.

Cue 3: When the head is in position to breathe, the swimmer can see the wall at the end of the pool.

Remember those two options?  If the swimmer does not change the neck angle, then he/she must change the body angle to position the mouth above the surface. When the body angle changes, the swimmer generates excess resistance, expends more energy, and swims slower.

I hope you’ll consider the “Loch Ness Monster Neck” and discover for yourself that this breaststroke breathing technique is real – and far more effective that the more conventional method!

By | December 5th, 2018|Uncategorized|0 Comments

5 Swim Practice Habits That Will Help You Swim Faster

1. Chunk your workout.
Dedicate a specific distance to specific technique elements, speed, or effort level. For example, swim a set of 10 x 25 yards fly focused on keeping your head motionless at the surface of the water on the non-breathing strokes.

2. Commit to an improvement plan.
Set a short-term goal and determine how you will measure progress. For example, establish a base line stroke count for 25 yards/ meters and figure out how much variability there is in a given workout. Work on stroke count consistency before setting improvement goals.

3. Construct bottom-line instructions for each set.
Plan each training set using DIRT – distance, interval, repetitions, and time for each swim. Then, practice deliberately by following your plan for each set.

4. Focus on single technique adjustments.
There are two reasons for this. First, it is very difficult to maintain technique when fatigued and second, many elements of technique are complicated and must be learned in sequence. For example, a swimmer must control head position before addressing arm motions. Once one technique element is mastered, another can be added.

5. Give your body the time and fuel it needs to recover.
According to Dr. Joel Stager, Director of the ‘Doc” Counsilman Center at Indiana University, improvement happens with recovery – not stress, killer workouts or thought-free yardage. Dr. Stager is also a firm believer in the benefits of chocolate milk immediately after each practice to help the recovery process. (Learn more:

By | November 8th, 2017|Uncategorized|0 Comments

5 Scientific Concepts Behind Optimal Technique

Do you know the real effect science has had on swimming? Here are 5 of the most important scientific concepts behind today’s most competitive swimming technique.

1. Swimming forces are composed of both lift and drag.

Why is this important? Research on lift and drag forces made it possible to determine optimal angles for the hand pitch and the hand path that would maximize propulsion.


 2. Hand speed must increase throughout the underwater motion.

Why is this important? During the underwater motion of all strokes, a swimmer should continually increase hand speed. Hand acceleration is critical for faster times.


 3. The Index of Coordination (IdC) quantifies the relative positions of the arms during the stroke cycle.  

Why is this important? When a swimmer is completing the push phase with one hand, he or she should immediately begin the pull phase with the other hand. This technique adjustment (creating a positive IdC) produces a more continuous source of propulsion resulting in faster times.


 4. The Law of Levers applies to the strength of different arm positions.

Why is this important? Applying the concept of leverage (i.e. the Law of Levers) makes it possible to determine how best to position the arm throughout the stroke cycle.


 5. The Drag Coefficient quantifies the impact of technique changes.

Why is this important? An accurate measurement of technique provides valuable information that allows both the coach and swimmer to evaluate the benefit of any technique improvement.

By | July 21st, 2017|Uncategorized|0 Comments

Unconventional Backstroke Start

Racing starts can vary from swimmer to swimmer, but there is one constant: the desire to start the race as fast as possible. Based on biomechanics, we’ve got a take on the backstroke start that you may not have seen before. When executed correctly, this small change helps swimmers begin their race with maximum propulsive force.



Swimmers typically swing their arms above their shoulders on a backstroke start. This motion causes the swimmer to distribute force at a more downward angle on the wall—sometimes even causing feet to slip.

A swimmer will have less chances of having the feet slip on the wall and will be better able to generate propulsive force if the arms swing back below the shoulders and into a streamline.




Give it a try on your next backstroke start!


By | June 15th, 2017|Uncategorized|0 Comments